ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОНННОГО СОВЕТА Д 220.061.06, СОЗДАННОГО НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.И. ВАВИЛОВА» МИНИСТЕРСТВА СЕЛЬСКОГО ХОЗЯЙСТВА РФ ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЁНОЙ СТЕПЕНИ КАНДИДАТА НАУК

аттестационное дело №	<u>'o</u>
-----------------------	-----------

решение диссертационного совета от 21 декабря 2017 г., протокол № 4 О присуждении Карповой Ольге Валериевне, гражданке РФ, ученой степени кандидата технических наук.

Диссертация «Усовершенствованные устройства приповерхностного дождевания дождевальной машины "Фрегат"» по специальности 06.01.02 — «Мелиорация, рекультивация и охрана земель» принята к защите 18 октября 2017 г., протокол № 2 диссертационным советом Д 220.061.06, созданного на базе ФГБОУ ВО «Саратовский государственный аграрный университет имени Н.И. Вавилова» Министерства сельского хозяйства РФ, 410012, г. Саратов, Театральная пл., 1, приказ о создании № 105/нк от 11.04.2012.

Соискатель Карпова Ольга Валериевна 1967 года рождения. В 2009 г. окончила ФГБОУ ВПО «Саратовский государственный аграрный университет имени Н.И. Вавилова», в 2014 году окончила магистратуру ФГБОУ ВО «Саратовский государственный аграрный университет имени Н.И. Вавилова», в 2016 г. очную аспирантуру ФГБОУ ВО «Саратовского государственного аграрного университета им. Н.И. Вавилова» Министерства сельского хозяйства РФ. Работает старшим преподавателем на кафедре «Техносферная безопасность и транспортно-технологические машины» ФГБОУ ВО «Саратовский государственный аграрный университет им. Н.И. Вавилова» Министерства сельского хозяйства РФ.

Диссертация выполнена на кафедре «Техносферная безопасность и транспортнотехнологические машины» ФГБОУ ВО «Саратовский государственный аграрный университет имени Н.И. Вавилова» Министерства сельского хозяйства РФ.

Научный руководитель — доктор технических наук, доцент Соловьев Дмитрий Александрович, кафедра «Техносферная безопасность и транспортно-технологические машины» ФГБОУ ВО «Саратовский государственный аграрный университет имени Н.И. Вавилова», заведующий.

Официальные оппоненты: Снипич Юрий Федорович, д-р техн. наук, ФГБНУ «Российский научно-исследовательский институт проблем мелиорации», вед. науч. сотрудник отдела «Прогнозирования развития мелиоративной отрасли»; Антипов Алексей

Олегович, канд. техн. наук, доцент кафедры «Общетехнические дисциплины, теория и методика профессионального образования» ГОУ ВО МО «Государственный социальногуманитарный университет» дали положительные отзывы на диссертацию.

Ведущая организация — ФГБНУ «Всероссийский научно-исследовательский институт гидротехники и мелиорации им. А.Н. Костякова» г. Москва, в своем положительном заключении, подписанном Головиновым Евгением Эдуардовичем, канд. тех. наук, вед. науч. сотрудником, указала, что по актуальности, научной новизне, объему выполненных исследований, научной и практической значимости решаемой задачи, представленная работа соответствует требованиям п.9 «Положения о присуждении ученых степеней» предъявляемым к кандидатским диссертациям, а её автор достоин присуждения искомой степени по специальности 06.01.02—Мелиорация, рекультивация и охрана земель.

Соискатель имеет 14 опубликованных работ, в том числе по теме диссертации опубликован14 работ, из них в рецензируемых научных изданиях 14, 1 патент на изобретение и 2 патента на полезную модель. Общий объем публикаций 3,66 п. л., из них – 2,44 п.л. принадлежит лично соискателю. В диссертации и автореферате отсутствуют недостоверные сведения о работах, опубликованных соискателем.

- 1. Рыжко Н.Ф. Совершенствование устройств приповерхностного дождевания для ДМ «Фрегат» / Д.А. Соловьёв, **Карпова О.В.**, Н.Ф. Рыжко, С.Н. Рыжко // Аграрный научный журнал. 2016. № 3. С. 65–68.
- 2. Рыжко Н.Ф. Методика расчёта эпюр распределения дождя вдоль радиуса полива дефлекторных насадок / Н.Ф. Рыжко, Л.Н. Мазнева, С.Н. Рыжко, С.В. Ботов, **О.В. Карпова**, Д.А. Соловьёв // Аграрный научный журнал. 2016. № 4. С. 66–68.
- 3. Затинацкий С.В. Гидравлическая модель работы модифицированной ДМ "Фрегат" с возможностью движения без полива / Затинацкий С.В., Колганов Д.А., Кириченко А.В., **Карпова О.В.**, Петровичев И.В. // Научное обозрение. 2017. № 15. С. 20-27.

На диссертацию и автореферат Карповой О.В. поступило 12 положительных отзывов: член- корр. РАН, д-р тех. наук, проф. каф. «Техносферная безопасность, мелиорация и природообустройство» НИМИ им. А.К. Кортунова, филиал ФГБОУ ВО «Донской ГАУ» В.И. Ольгаренко и д-р тех. наук, проф. И.В. Ольгаренко; д-р с.-х. наук, проф., зам. директора по науке ФГБНУ «ВолжНИИГиМ» В.А. Шадских и канд. техн. наук, стар. науч. сотрудник И.А. Шушпанов; д-р техн. наук, проф. каф. «Природная и техносферная безопасность» ФГБОУ ВО «Саратовский ГТУ им. Ю.А.Гагарина» А.М. Козлитин; д-р техн. наук, проф. зав. каф. «Техническая эксплуатация технологических машин и оборудования природообустройства» ФГБОУ ВО РГАУ-МСХА им. К.А.Тимирязева В.А. Евграфов; д-р техн. наук, проф., ФГБНУ ВНИИ «Радуга» А.И. Рязанцев; д-р биол. наук, проф. каф. «Агроинженерия, мелиорация и агроэкология» ФГБОУ ВО Астраханский ГУ

А.Л.Сальников и канд. техн. наук, доц. каф. «Агроинженерия, мелиорация и агроэкология» В.Н.Руденко; канд. техн. наук, директор ООО «Мелиоративные машины» С.В. Гомберг; д-р с.-х. наук, проф. каф. «Мелиорация, водоснабжение и геодезия» ФГБОУ ВО «Воронежский ГАУ им. императора Петра I» А.Ю. Черемисинов; д-р техн. наук, проф. каф. «Мелиорация земель и комплексное использование водных ресурсов» ФГБОУ ВО «Волгоградский ГАУ» С.М. Григоров и д-р тех. наук, проф. каф. «Землеустройство и кадастры» А.Д. Ахмедов; д-р тех. наук, проф. каф. «Сельскохозяйственные машины и механизация животноводства» ФГБОУ ВО «Самарская ГСХА» Ю.А. Киров.

Основные замечания: недостаточно внимания уделяется анализу зарубежных дождеобразующих устройств; каким образом регулируется высота установки дождевальной насадки при использовании устройства приповерхностного дождевания типа «сборный рукав; почему при обосновании конструкции дождевальной насадки, угол вылета струи α принимается в пределах 15–20 град; насколько увеличивается масса дождевальной машины с учетом стабилизационных грузов и дополнительной массы воды в сборной штанге и рукаве?

Выбор официальных оппонентов и ведущей организации обосновывается наличием публикаций и местом работы в соответствующей сфере исследований.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований: разработана научная идея снижения потерь воды на испарение и унос ветром, а также уменьшения энергетического воздействия дождя на почву за счет использования новых конструкций устройств приповерхностного дождевания и дождевальной дефлекторной насадки с обратным конусом; предложены уточненные математические зависимости показателей качества полива ДМ «Фрегат», оборудованной дождевальными насадками с обратным конусом, от ее конструктивно-технологических параметров и метеорологических факторов;

доказано снижение потерь воды на испарение и унос ветром в зависимости от показателя напряженности метеорологических факторов при поливе ДМ «Фрегат» с устройствами приповерхностного дождевания и разработанными дождевальными насадками по сравнению с серийными дождевальными машинами; введен новый термин дождевальная насадка с дефлектором типа «обратный конус».

Теоретическая значимость исследования обоснована тем, что: доказано, что результаты работы могут служить методической основой к решению проблемы интенсификации технологий и технических средств орошения за счет совершенствования устройств приповерхностного дождевания и конструктивных решений для дефлекторных насадок; применительно к проблематике диссертации результативно использован комплекс существующих базовых методов экспериментальных исследований, основанный на методах математической статистике и теории планирования эксперимента;

раскрыта причина низкой надежности, сложности регулировки и высокой стоимости существующих устройств приповерхностного дождевания; изучены закономерности распределения дождя вдоль радиуса полива в зависимости от диаметра сопла и давления перед насадкой; проведена модернизация ДМ «Фрегат» за счет изменения конструкции устройств приповерхностного дождевания с водоподводящими рукавами и трубами из антикоррозионных материалов и дождевальными насадками «обратный конус».

Значение полученных соискателем результатов исследования для практики подтверждается тем, что: разработаны и внедрены новые устройства приповерхностного дождевания и дождевальные насадки «обратный конус» в ООО «Березовское» Энгельсского района Саратовской области, что обеспечивает увеличение коэффициента эффективного полива при ветре до 0,7...0,8 и повышение урожайности сои на 14...18%; определены перспективы и направления усовершенствования устройств приповерхностного дождевания; создана и апробирована конструктивная схема дождевальной машины с усовершенствованными устройствами приповерхностного дождевания и дождевальными насадками с дефлектором типа «обратный конус», снижающая потери воды на испарение и унос ветром; представлены рекомендации по применению устройств приповерхностного дождевания с новыми дождевальными насадками для ДМ «Фрегат» различных модификаций, обеспечивающих повышение равномерности полива при ветре на 6...14% по сравнению с среднеструйными аппаратами и на 20...34% по сравнению с дефлекторными насадками, устанавливаемыми в стандартные штуцера.

Оценка достоверности результатов исследований выявила: экспериментальные результаты получены на основании использования современных стандартных методик и соответствующего сертифицированного оборудования, применяемых в мелиоративной отрасли, на научно-производственной базе ФГБОУ ВО Саратовский ГАУ, ФГБНУ «ВолжНИИГиМ», ООО «Березовское» Саратовской области; теория испарения воды при дождевании построена на известных исследованиях С.М. Мансурова, В.Е. Хабарова, П.И. Кузнецова, Ю.Ф. Снипича, Н.Ф. Рыжко; идея базируется на результатах обобщения литературных и патентных источников, а также передового опыта применения устройств приповерхностного дождевания на современных многоопорных дождевальных машинах; использованы результаты сравнения данных автора с аналогичными, полученными ранее по рассматриваемой тематике в ФГБОУ ВО Саратовский ГАУ, ФГБНУ «ВолжНИИГиМ», ФГБНУ «РосНИИПМ», ФГБНУ ВНИИ «Радуга», ФГБОУ ВО Донской ГАУ; установлено качественное совпадение авторских результатов с результатами, полученными по рассматриваемой тематике В.Е. Хабаровым, В.Ф. Носенко, П.И. Кузнецовым, Ю.Ф. Снипичем, Н.Ф. Рыжко; использованы современные методики сбора и обработки исходной информации при проведении лабораторно-полевых исследований.

Личный вклад соискателя состоит в: сборе и анализе исходных данных, разработке программы исследований, теоретическом обосновании и проведении лабораторных и полевых исследований; статистической обработке результатов лабораторных и полевых исследований, формулировании заключения и рекомендаций производству и составляет не менее 80%.

На заседании 21 декабря 2017 г. диссертационный совет принял решение присудить Карповой О.В. учёную степень кандидата технических наук.

При проведении тайного голосования диссертационный совет в количестве 18 человек, из них 6 докторов наук по специальности 06.01.02 — «Мелиорация, рекультивация и охрана земель» (технические науки), участвовавших в заседании, из 24 человек, входящих в состав совета, проголосовали: за — 17, против — 1, недействительных бюллетеней — нет.

Председатель

диссертационного совета

Бондаренко Юрий Вячеславович

Ученый секретарь диссертационного совета

Маштаков Дмитрий Анатольевич

21.12.2017 г.